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1 Introduction

We propose to design and implement a new approach to interactive online homework problems
called “SageCloud Interactive Problems” (SCIP) that will initially target students in courses in-
volving advanced computational mathematics. Despite enormous computational challenges, we
believe that we can make the system cost effective by leveraging open source software, cloud
computing, and by relentlessly optimizing our implementation based on real world usage. More-
over, by building on recent work, SCIP will provide realtime feedback, detailed analytics, deeper
computational problems than existing systems, and improved realtime interaction between stu-
dents and instructors. In particular, we would leverage the NSF-funded SageMathCloud (SMC)
platform and NSF-funded SageMath software. If successful, our project would greatly increase
the ability of students to use open source tools for doing computational mathematics, for writing
up and sharing their results, and make courses less work to teach and more effective.

2 Elevator Pitch

Many mathematics classes at most universities make use of an online homework system. Students
typically pay around $20/semester to use the system. Despite their popularity, the existing
systems have several shortcomings: it is difficult to author new problems, it is hard to find
problems that are suitable for the specific topic currently being covered in a course, and problems
tend to stop working properly as the system is upgraded.

SCIP will be a new platform for interactive homework problems built on top of SageMathCloud
(SMC) that addresses these shortcomings. These improvements are made possible by leveraging
SMC, which has been developed at University of Washington with the support of several NSF
grants.

The use of SMC will directly address the issue of problem obsolescence by using our existing highly
developed testing procedures: automated testing will immediately detect any errors introduced
during system upgrades. The use of SMC will also address the authoring problem by using
standard and ubiquitous programming tools such as Python and a modern web-based interface.
Moreover, the SMC platform supports realtime interactive use of sophisticated mathematical
software.
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To help instructors find suitable problems to assign to their students (or to help students find
problems on a topic where they need more practice) we will employ an “App Store” model, similar
to the way people find smart phone apps or the way Amazon tells customers “if you liked that
problem, you may also like….” This is a new approach, which is not being used by (and may be
very difficult to retrofit to) the existing systems.

Our plan for entering the interactive homework system market is to begin by focusing on upper-
division mathematics classes. Currently none of the existing systems cater to that market, so the
barriers to entry will be very small. Since the faculty members who teach those courses also teach
lower-division courses (such as Calculus), familiarity with our product will be a major advantage
when we later expand to include those high-enrollment courses. This approach will enable us
to develop the core functionality of our product without having to simultaneously develop the
infrastructure to handle millions of simultaneous users.

Instead of worrying about installing and updating software, learning complicated revision control
systems, and figuring out how to use cloud or local computers, our target instructors want to focus
on teaching their students how to compute. Some of these users, especially students and people
in developing countries, are extremely price sensitive. Our proposed project would leverage open
source software, cheap cloud computing resources, and systematic optimization based on user
feedback to make the above affordable.

A key innovation of SMC is that it is built upon a pool of open source software that leverages the
combined knowledge and experience of thousands of developers and millions of work hours. We
provide value by packaging all of this in a neatly integrated, easy-to-use and fully managed web-
based application. We propose to take the same approach with SCIP, building on the platform
that we have already developed.

SMC is an efficient and completely open source stack that handles a huge range of mathematical
computations, including advanced pure mathematics, numerical analysis, and statistics. Users
can write computer code and edit LaTeX documents, and there’s extensive support for “inter-
active computational documents,” including IPython notebooks and Sage worksheets. Such rich
interactive computational documents are appealing to novice users.

3 The Commercial Opportunity

3.1 Broader societal need

Many people want to know how to use computation more effectively in their jobs for tasks that
involve mathematics. There is a growing need for every-day programmers, operating complicated
data-based systems, to implement their domain-specific knowledge. By dramatically reducing the
friction to using the computational tools in education, and providing new interactive problem-
based tools for learning computation, we will address this need. Moreover, we target free open
source tools, so that our users get greater value out of what they learn.

Another social need is easy access to computational resources for projects that benefit society.
Companies already provide easy free world-wide access to email (e.g., Gmail), short public broad-
casts (e.g., Twitter), and networking with friends (Facebook), but no company provides extremely
easy collaborative access to sophisticated mathematical computation at Internet scale. Providing
this would potentially enable new innovation worldwide. Our proposed SCIP project would pro-
vide tools that would help people to learn to use the broad computational resources that SMC
makes available.
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3.2 Market and business economics

The initial market for SCIP will be every student who is taking a course that involves advanced
computational mathematics.

Our target market values the functionality SMC supports. Education is increasingly collaborative,
which leads to the need for better tools to support this shift. Teachers are overworked and greatly
value convenience for their IT infrastructure.

Price matters to our target market. Students are extremely cost sensitive, budgets are tight, and
some teachers care about finding solutions for their students that are efficient and affordable.

We have validated the demand for sophisticated web-based open source mathematical software by
creating several iterations of SMC, made available for free. We created basic course management
functionality, which makes SMC usable for teaching a course. SMC is a 100% web-based system
that was used during Spring 2015 by over 65 courses ranging from traditional Calculus courses
to courses in Global Health, Numerical Analysis, Elliptic Curves and Mathematical Finance (see
https://github.com/sagemathinc/smc/wiki/Teaching), and SMC has had over 100,000 users. In
May 2015, we transitioned SMC to a “freemium” commercial business model and have had 35
paying customers (with nearly $1,500 in revenue so far). Our proposed homework system would
dramatically expand the potential ways to use the tools we offer with SMC in education, so we
think customers will have an interest.

The customers we will focus on for this proposal are instructors teaching upper division courses
(both at universities or online) and the students in those courses. The business model is freemium.
This means that the majority of users consider the service fully usable for free and (like Gmail
or Dropbox) the free version is not just a trial version! However, we also intend to charge
many users a monthly fee to run their projects on better members-only computers. We also sell
dedicated resources that instructors can use for all students in a course they are teaching, or for
research computations. We pay Google for cloud compute resources; in exchange for managing
the resources, backing up disks, and providing redundancy, we mark up the cost by a certain
percentage. We thus make it easy for many unrelated users to share resources in the cloud and
benefit from our experience managing these resources. We provide a web-based interface that
makes the underlying virtual machines easy to use for teaching a course, or doing a collaborative
research project. Whenever we provide dedicated compute resources we make money, since we
are simply marking up their cost by a fixed amount. We also keep the cost down for the free
resources by using Google’s cheaper “preemptible instances”, which randomly get rebooted, and
we restrict the memory and speed of each user’s project.

The interactive homework system we plan to build would use the freemium business model de-
scribed above. It would provide SMC with more functionality, which would make SMC valuable
for a wider range of courses, hence increase the number of customers. Instructors will be encour-
aged to make problems they develop freely available; however, they will also have the option to
make problems available for a fee to be used in other people’s courses. The fee would then be
rolled into the cost for the course (and we would take a percent). As part of this proposal we
will test the following hypothesis:

Hypothesis: This “app store” style marketplace could motivate the creation of a large number
of high quality problems.

Advanced math courses are frequently small, so instructors are free to choose whatever books,
tools, etc. they fancy. Though we will initially target advanced mathematics courses, there is
a potential for a trickle-down effect. Suppose an instructor likes using SCIP for the advanced
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problems that other software doesn’t support. They may later advocate to their colleagues to
use SCIP for larger multi-section courses (e.g., Calculus) since they know and like it. We will
test this with surveys of those who use SCIP for one course:

Hypothesis: Instructors that use SCIP for an advanced course will advocate using it later in
large introductory courses.

3.3 The competition

There are many existing online problem systems that each target a specific market segment.
SCIP will initially target advanced computational mathematics courses, which is a segment of
the market that hasn’t received as much attention, perhaps since the computational requirements
are so challenging.

A potential competitor to SCIP could be built on Wolfram Research’s product Wolfram Cloud,
which provides web-based access to Wolfram Mathematica. Wolfram Cloud is different than SMC
since it is nonfree, is closed source, and has very limited collaboration and course management
functionality. Nevertheless, it would be natural to develop interactive problem functionality on
top of this platform. Wolfram Research’s longterm investment in their Demonstrations function-
ality would provide an excellent foundation on which to build an online interactive homework
problem system. It’s thus quite plausible that the Wolfram Cloud could make a major leap in in-
teractive homework support and course management functionality in the next 8 months, exactly
when SCIP might enter the market. Similar remarks and analysis apply regarding Mathwork’s
Matlab system and Maplesoft’s Maple software.

There are many automated homework systems that have been on the market for years. Most
offer comparably limited sophistication of interactive homework problems, which seems fine for
most introductory courses. We believe our proposed product would be more useful for advanced
and computational courses than the these systems. It is likely that some of these competitors
will add functionality similar to what we propose for SCIP in the next 8 months, since more
advanced courses are a natural market for any competitor to expand into.

Leaving aside interactive homework problems, and instead considering interactive document cre-
ation, there are many competitors to SMC (not SCIP). For example, https://wakari.io/, provides
a way to use IPython notebooks online. But it’s more limited in scope, with no course manage-
ment, realtime synchronization or document editing functionality. However, it’s only non-free
plan is currently $25/month, which is too expensive for some undergraduate students. Wakari
has no collaboration support, and nothing to specifically support teaching or pure mathematics.
There are other sites providing similar functionality, e.g., https://www.pythonanywhere.com/
and https://sandstorm.io/. There are also online coding environments such as https://c9.io/,
https://codenvy.com/, and https://koding.com/ which resemble SMC, but again are not ori-
ented around mathematics or teaching.

Finally, there are some online LaTeX editing environments, including ShareLaTeX and Overleaf.
A core difference between SMC and the other LaTeX editors is that SMC provides a general
computational environment, whereas the aforementioned LaTeX editing environments have no
direct way to execute arbitrary code or interpret and transform data of computational results
into documents. SMC’s general approach offers several ways to embed computations and datasets
into documents. The relevance to SCIP is that full support for editing LaTeX documents is a
useful foundation for pure mathematics courses that involve writing proofs.
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3.4 Key risks in bringing the proposed innovation to market

A risk is that the only users of our SCIP problem service will be people who can’t afford to
pay anything. We can mitigate this by making our product add sufficient value.

Another risk is that our software is open source, and most users who like SCIP will instead
simply take it and run it themselves on the cloud or their own servers, rather than pay us. It’s
fine if some (even most) users run SCIP themselves, as long as a sufficient percentage don’t. The
best way to ensure that people use our central service is to implement ways to make SCIP benefit
from network effects, so that our single centralized server with a large number of users (and their
content) is much more valuable to everybody than a small private server. In particular, our pro-
posed database of refereed and curated interactive problems is critical, as is superb collaboration,
communication, and crowdsourcing functionality. Moreover, we need to make it so that SCIP
efficiently shares resources between users, so there is much more value in 10 users paying us for a
single machine, than 10 users paying Google directly for 10 separate machines–to make this the
case, we have to make SCIP extremely efficient, good at sharing resources, and leverage how we
know people use the services interactively (often thinking about a question, then running code
for a few seconds, then mulling over the results, etc.).

A similar risk is that because our software is open source a competitor could simply run
exactly the same software on the same cloud as us, and charge a slightly lower margin. We
don’t know if this will happen or not, and legally there is nothing to prevent it, except that we
can require a competitor to call the service by a different name (due to the trademark). Again,
maximizing the value of network effects, curated content, and the quality of our user support,
reputation and development pace are the best strategy for addressing this risk. Also, from the
NSF’s perspective, if other companies pick up this technology and run with it and build great
businesses that out-compete SMC, then NSF’s investment will have been a great success, since
they will have supported a big advance in technology, even if SMC is not the beneficiary.

Another risk is that interactive homework is very hard to get right. Online games are difficult
to implement and platforms for writing online games are even harder. There are many attempts
(and much research into ways) to create innovative interactive homework systems, methods to
describe problems to these systems, strategies for presenting these problems, and techniques for
collating, sharing and making available these problems to others. Looking at the results so far
suggests this is a very hard problem. Even building on our system using a clean conceptual
framework using a powerful and flexible platform (SMC) combined with our experience, users,
and powerful open source software for mathematics might not be enough to produce something
that works sufficiently better than existing solutions.

3.5 Commercialization Approach

We create open source software, which runs in the cloud on Google Compute Engine. Most users
will try or use SMC online for free, but some small percentage will pay. For this to be profitable,
it’s critical that the software be extremely efficient, since many of our target customers are price
sensitive students, and perceive themselves as being overcharged for textbooks and tuition. The
primary products we plan to sell are memberships (with a monthly fee) and dedicated virtual
machines. Dedicated machines would be rented by teachers (or their students) wanting better
resources for running their classes. For the dedicated virtual machines, we will mark up the price
by a fixed percentage, so every sale results in profit.

The longterm revenue potential is significant, since the entire market for interactive problems is
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large. Whether we will create a product good enough to appeal to even a small percentage of
that market is unclear. Also, we are initially only targeting advanced computational mathematics,
which is a relatively small market.
The resources we need to implement our plan are people to write software, people to talk with and
support users, and money to rent cloud compute time until we are cash flow positive. This SBIR
would provide enough financial support to hire people to implement a first usable version of the
proposed interactive problem platform, get some testing by users, and iterate on this feedback.
We would use the funding to hire the PI, who is an experienced teacher, and some programmers
with classroom experience. As an academic and founder of the SageMath software project, the
PI has the necessary connections. Our hope is that using resources the company already has,
we will have people in place for the project at a small percent of time, so if we get funding from
SBIR, we can then pay these people to work a larger percent of time, with vastly more ambitious
goals.

3.5.1 Product-market fit

The proposed SCIP problem system, which we plan to implement, doesn’t exist yet, so it is
difficult to address product-market fit. As evidence for product-market fit of SMC, on a typical
weekday during Fall 2015, SMC would be used by around 3000 people. There are many sites for
interactive homework, which suggests that there is demand for our service.
Based on user feedback, we know of several reasons that college teachers use the SMC platform.
SMC lets them get around issues and inefficiencies with campus IT. Permission with campus IT
can be hard to get, help is difficult, service can be poor, resources may be insufficient, and it is
hard for IT to know a priori what user needs will be, hence they will often allocate resources
inefficiently. Moreover, personal computers of many students are in poor condition on which they
are afraid to install software.
We have also found that teachers greatly value even the most atrocious interactive
online homework systems. Grading homework is very time consuming, but interactive home-
work systems are patient and available at all hours, and instructors find that their students are
often far more engaged in learning mathematics when they get immediate feedback.
We have seen that with SMC’s collaboration capabilities, instructors can easily see and interact
with exactly what their students are doing. Also, instructors value that detailed information
about what the students type while working on their homework is recorded in SMC, which
makes detection of cheating easier, and also provides more detailed feedback on how students
are doing in a course. (Unfortunately, clear evidence of cheating, exactly when it happened, and
how and by whom, has been periodically reported to us by instructors using SMC in courses.)

3.5.2 Presenting barriers to entry for competition

SCIP is aimed at computational mathematics teachers and students, especially those that care
about cost, efficiency, and value open source software. To design SCIP in the first place, and to
continue to refine it indefinitely, will require people with extensive experience teaching courses
involving computational mathematics. The PI, who is also CEO of SageMath Inc., is the founder
of the SageMath open source mathematics software project, which is the largest open source
math software project. Sage has had over 500 contributors since when he founded the project
in 2005. He has been passionately involved in the development of mathematical software and
computational mathematics research and education since 1998, and has had a substantial impact
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on the field. For example, he was recognized with the ACM Richard D. Jenks Prize in 2013. Also,
there have been 70 Sage Days workshops. Many potential competitors do not have this depth of
experience and connection with the community.

Just copying the implementation of SMC wouldn’t give a competitor a unique advantage, since
the source code of SMC itself is completely open. Instead, we have a head start since we have
been building a community around Sage for a decade, and around SMC for several years now
(100,000 registered users). SMC is collaborative, which results in a big network effect, where
SMC is more valuable because some of your colleagues already use it. This community is a base
of potential users of SCIP.

The pricing model is another barrier to entry. Offering a service with a significant markup over
the cost of hosting is a race to the bottom. Instead, SMC shortcuts that race and already starts
with a low price (a freemium model with $7/month for some premium features, plus a standard
percentage markup on whatever Google happens to be charging for cloud computing resources).
This doesn’t leave much room for competitors operating on top of the same free tools (Linux,
LaTeX, SageMath, R, Python), unless they offer a significantly better service on top, e.g., human
support, extra value through having far more users, more software pre-installed, etc. The pricing
for SCIP would be identical–we’re just adding SCIP as another application that anybody can
run on top of the SMC platform.

4 The Innovation

Our proposed online interactive problem system mainly builds on the Sage mathematical software
and the SageMathCloud platform.

SageMath is powerful open source mathematical software developed since 2005 with millions
in NSF support. SageMath is open source software that provides comparable functionality to
Mathematica, Maple, Matlab, and Magma. It is powerful and user friendly, and uses the popular
scripting language Python.

SMC is a sophisticated cloud-based collaboration environment for using SageMath, R and other
software, which has been under development for about 3 years, with significant feedback from
users.

SMC involves only technology that is open source, hence available to all. However, we also
have market data due to running the software for years. We have experience and a developer
community that cuts vertically through all levels of mathematics. Also, Google, Microsoft, and
Amazon are aggressively competing to offer cheap and flexible cloud-based compute, which is key
to SMC being viable.

SMC offers realtime sync at all levels of the system, which makes people more efficient at collab-
orating on computational mathematics. It also makes it easier for an expert to quickly help out
with problems that beginners hit. Moreover, the evolution of computational documents (every
keystroke!) is recorded, which supports reproducible research, and adds a new dimension.

5 The Company and Team

SageMath, Inc. was founded in February 2015 as a Delaware C Corporation with assistance from
Fenwick & West, which is a law firm that advises technology companies and start-ups, such as
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Facebook, Google, Uber, Dropbox, WhatsApp, and Cisco. William Stein is the owner and CEO
of SageMath, Inc., and a modest initial angel investment was provided by William Randolph
Hearst, III. William Stein has been working full-time on SageMathCloud and SageMath, Inc.
while on a sabbatical leave from the University of Washington. Business operations include a
website, bank accounts, and billing through Stripe.

The first product offering, an individual membership in SageMathCloud at $7/month, was made
available in mid-May 2015. Courses with demanding computational needs (such as student
exercises in parallel computing) have paid for dedicated resources. Together these customers
have generated nearly $1500 in revenue.

The team has an excellent understanding of the needs and requirements of their market. The
contributors to SMC are vertically integrated with a balance of contributors from high school,
college, graduate school, teaching, research, and business. The core team consists of William
Stein (Professor at Univ of Washington), Harald Schilly (applied mathematics Ph.D. candidate
in Vienna, Austria), Rob Beezer (professor at Univ of Puget Sound), and Jon Lee (Undergradu-
ate at Univ of Washington). The team also consults about business matters with Dennis Stein
(San Diego businessman), Tim Abbot (co-founder of two successful tech startups, now at Drop-
box), and Will Hearst (experienced venture capitalist, investor and philanthropist), and discusses
approaches to online homework with high school student Sequoia Lefthand. We have also con-
sulted regularly with numerous faculty at Univ of Washington about the design of SMC, including
Randy Leveque and Max Leiblich, and with Craig Citro and Robert Bradshaw at Google.

The PI, William Stein, founded the SageMath open source mathematical software project in
2005. He has managed millions of dollars in funding from NSF, Google, Microsoft, and DOD.
He is the 2013 recipient of the ACM/SIGSAM Richard D. Jenks Memorial Prize for excellence
in software engineering applied to computer algebra. He has significant market penetration in
pure mathematics research: he’s been cited in at least 410 articles, theses and books, and is the
author of over forty original research articles in mathematics, and three published books. He has
twenty years experience teaching undergraduate and graduate courses, and has supervised four
completed Ph.D. theses and several undergraduate projects.

Harald Schilly is a Ph.D. candidate at Universität Wien in Vienna, Austria. Since 2007, he
has made numerous contributions to the core SageMath library in numerical mathematics and
optimization. He maintains numerous aspects of the Sage infrastructure, such as web sites and
mirror sites. He is the design lead of the SageMath website and brand and is responsible for
community management and marketing Sage (social media, designing fliers, etc.) He has been
heavily involved with SageMathCloud development, and assists William Stein with technical
design decisions and implementation. He provides online help for users, and is responsible for
marketing SageMathCloud. He owns a consulting business in Austria that helps manage technical
aspects of teaching courses at his university, doing data analysis, design, programming, and
statistics. He has several years experience teaching programming courses.

Robert Beezer has made numerous contributions to the core Sage library in linear algebra, graph
theory and group theory, since 2009. He is an active member of the user and developer commu-
nity, and has organized four Sage Days workshops specializing in educational uses of Sage. His
mathematical research involves Algebraic Graph Theory, and he has published fifteen original
research articles. He has also written three online open source textbooks, which include extensive
discussion of Sage. He is the project founder of the open source Mathbook XML authoring system
for creating online open textbooks. He has taught courses and designed instructional software at
University of Puget Sound for over 37 years, and supervised 31 undergraduate research projects.

Jon Lee is an undergraduate computer science major at University of Washington. He became
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involved with SageMathCloud development when SMC was used for a course he took on scientific
computing. In 2014 he spent the summer leading a team of undergraduates who worked fulltime
doing SMC development, and is being funded by Google to work fulltime on SMC during Summer
2015.

In addition, the SageMath software is an open source project with over a decade’s history of
attracting top-flight researchers in pure mathematics and programmers with excellent technical
skills. The implementation of sophisticated algorithms in Sage results in a highly reliable and
easy-to-use package that has attracted a large user community, who in turn provide testing,
discussion, advice, and requests for enhancements. The volunteer contributions of over five
hundred mathematician-programmers and thousands of users are a key part of maintaining and
improving a critical component of SageMathCloud.

6 Technical Discussion and R&D Plan

6.1 Introduction

We propose to implement, on top of the SageMathCloud (SMC) platform, a next generation
system for web-based homework problems called SageCloud Interactive Problems (SCIP).

Many of the innovations of existing interactive homework systems involve integrating with pub-
lisher content, using statistical techniques to provide more relevant sequences of problems, check-
ing answers and providing hints very quickly by working entirely in the browser, integration with
video, and leading the user step-by-step to solutions using hints. Our plan is to implement a
system that not only leverages many of the above innovations, but also supports sophisticated
compute on the backend servers, and records everything the student does in detail, synchronized
in such a way that instructors and tutors can see what is happening as students work and pro-
vide feedback in realtime. This would make the experience of walking around a computer lab
available online. Moreover, all this will be optimized to support application in pure mathematics,
statistics, and numerical analysis. Problems will be shared among users, and data about how
the problems have been used (basically every keystroke by every single student) will be mined
to provide a better experience. We also plan to implement improved functionality for computer-
assisted manual grading of advanced problems and for enabling peer grading of problems by
students in a course. We will focus mainly on theoretical mathematics, and courses that involve
programming in Python and R, and computational mathematics.

6.2 Difficulties

At its core, SCIP involves designing and implementing a way to create interactive problems, a
way to share those problems, and a way to systematically combine problems into assignments.
There are many daunting problems that arise in addressing these challenges.

6.2.1 Computational documents are hard

One technical difficulty is that making “computational documents” (Sage worksheets, IPython
notebooks, etc.) available online efficiently at scale is very hard, because these documents are
more expensive to host. The realtime synchronization problem for computational documents is
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challenging and SMC demonstrates that it can be solved (of course, building on our implementa-
tion of similar algorithms that are used in Google Docs). We envision our interactive problems
as being a special type of computational document with realtime sync.

6.2.2 Checking answers is hard

The full power of Sage and other software will be available to problem authors to check answers.
E.g., a problem author might want the strings 1/3, 0.333, 0.33331 to be considered correct answers
for f(3) when f(x) = 1/x. Nontrivial numerical and computer algebra algorithms in Sage can
be adapted to address some of these problems, with the solutions made available in a reusable
library. Many current online problem systems simply sample functions at a range of values and
presume that multiple numerical agreement is function equality; in addition to that approach,
Sage can do much more by using sophisticated symbolic simplification, interval arithmetic, and
other techniques. This is a place where Sage is potentially superior to some existing systems’s
answer checkers, which though quite good, are limited in scope to “basic” algebra, functions
and matrices. Much more sophisticated functionality from Sage will be required to address
more advanced mathematical problems, e.g., involving abstract algebra, number theory, algebraic
geometry, combinatorics, algebraic topology and so on (all areas where Sage is highly developed).

6.2.3 Maintaining problem quality is difficult

You only have to admit in class that one or two problems are busted and then every evening
you get a flood of 10 p.m. emails, “I know I have number 7 right; it must be a busted problem?”
Well, no.

Instead of trying to amass the largest number of problems possible, or to try to copy problems
from existing textbooks, we will aim initially for high quality problems for more advanced courses.
We will carry over ideas from the Sage software development process, which is a carefully refined
peer review process inspired by a mix of how the peer review process works for journals and how
code review works in other open source projects (see http://trac.sagemath.org/). We believe
homework problems need to meet the same high standards of review and automated testing that
we apply to Sage’s codebase. This is expensive, frustrating and difficult, but is needed to ensure
problems are useful to instructors and stay reliable several years later as Sage and other software
evolves.

6.2.4 Authoring problems is hard

We do not expect an instructor to single-handedly author 30 problem sets of 10 interactive
problems each, on-the-fly during a semester. We estimate that a good problem takes at least an
hour to write, test, debug, refine, and often much more time, depending on whether the problem
involves adapting an existing problem or not. Creating a good problem is much like creating a
puzzle or game, with a range of input states, hints along the way to mastery, and so on.

Making the authoring tools as easy as possible to use is very important. We have some experience
in this direction with Sage worksheet and the interact functionality, which automatically turns
functions into interactive graphical interfaces. However, much additional innovation, leveraging
the latest web development techniques (e.g., reusable UI components), will be needed. Also,
we will design and implement social mechanisms to encourage the growth of an ecosystem of
peer reviewed and automatically tested problems, including giving SMC credits in exchange for
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making good problems available, and even creating a marketplace for problems. In addition to
our own peer review and testing processes, we can also analyze student behavior (and simply ask
for feedback from students) to ascertain how good problems are.

6.2.5 Discovering useful problems is tricky

It is nice when an interactive problem is designed to exactly match the flavor of a problem in a
popular mathematics textbook. But the chain rule is the chain rule, no matter what book you
use. So curation, cataloging, indexing, keywords, etc., are extremely important, and not done
well in some existing interactive homework software. A rigorous review and testing procedure,
plus simply making it very easy for problem authors to classify their problems (e.g., automat-
ically suggesting tags based on heuristics), would ensure that the problems in SCIP are more
discoverable by instructors.

6.2.6 Problem management is a rat’s nest

Problem management is a real rat’s nest: rosters, scores, partial credit for late assignments,
extended deadlines for sick students, multiple or unlimited attempts to solve problems, and
automated peer grading of advanced problems (e.g., proofs or writing assignments). We all have
our quirks when it comes to student work, and making these issues easy to manage is a place
where a lot of effort is required to get it right.

6.2.7 Problems are resource intensive

Unlike most online homework systems, SCIP aims to support problems that may be very com-
putationally intensive for the students to solve. For example, imagine a problem in a scientific
computing course that requires interactively running parallel code on a 32-core computer: the
student would click a button to start working interactively on the problem, and a dedicated
Google compute engine pre-empt instance would start running at a cost to us of $0.352/hour (see
https://cloud.google.com/compute/pricing). The student would have a fixed maximum amount
of time in which to solve that problem, to ensure that the amount of resources they use aren’t
too expensive.

6.3 Development Plan (6-Month Timeline)

1. 2 weeks – Implement an initial minimal interactive problem system.
2. 2 weeks – Make the problem system usable via SMC and collect feedback as we encourage

people to test it.
3. 1 month – Implement a sharing marketplace
4. 1 month – Test the system on students via homework assignments
5. 3 months – Iterate

6.3.1 Implement a first simple interactive problem system (2 weeks)

Our design is inspired by well-known game programming and user interface design patterns.
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The first step is to create a simple version of an interactive problem system built on top of the
SMC platform. We have access to many problems created by instructors as Sage worksheets,
IPython notebooks, and LaTeX documents, which we can draw on for inspiration regarding
design requirements.
An interactive problem will be specified by four components:

• Description: A short title, a longer description, and tags.

• Initialization: A problem author would write code, written in any programming language,
that initializes the problem state (this is like randomly populating a game world). They
might run and output a string that can be parsed as JSON. For example, it could create
a random 3 × 3 matrix with integer entries that can be easily reduced to echelon form
(it could leverage sophisticated code in Sage for constructing examples of such matrices!).
The state will also include information about what the student has attempted so far, which
would be initialized to empty.

• Render: The author would create code (or a template) that, given the problem state object,
renders a view of it for the student to look at and interact with. There are many ways to
do this, and we may eventually support several. For the first version, we would create a
small Python library of code that generates user interface widgets, which are then rendered
in a browser (possibly using Facebook’s React.js library), and eventually also rendered in
a mobile app (possibly using React native). Widgets would include blocks of text that
can include LaTeX (or markdown, etc.), 2d and 3d plots (easily produced using Sage), and
standard controls such as input boxes, sliders, buttons, checkboxes, point selectors on plots,
and graphical formula input. This will be inspired by the interact functionality we have
had in Sage since 2007, but redesigned for interactive problems. As much as possible of
this rendering logic will live in the client, and what can’t will be asynchronously evaluated
on the back end. Also, multiple users (e.g., the student and the instructor) could both view
this rendered problem on separate computers, and see the same thing.

A key point is that the above UI widgets could leverage everything Sage and SMC have to offer.

• Respond: In realtime as the controls change state (e.g., drag a slider, click a button,
entering a formula in a box), the controls state is synced back to the server and updated
for all viewers. In addition, a program running on the server is given the chance to respond
to certain state changes by updating the state. These state updates could provide additional
user interface guidance (e.g., display a sequence of hints, additional reading material, etc.).
They could generate new random parameters for the problem, in case the hints have been
too excessive. If the student answers too slowly, it could generate another problem. Each
interactive problem is a game, which the student has to master. A single interactive problem
consists of potentially many randomly generated math problems. We will also add an option
so that the response actually punts to a human to do the grading in some cases, e.g., grading
a proof written in LaTeX of a theoretical mathematics problem. When this state is reached
the problem would indicate it and the user would close the problem and do something
else until being notified that the problem was graded, and the proposed solutions would
be pre-processed (e.g., check that programs run or LaTeX compiles before sending it to
an instructor for manual grading). Graders would also be notified that there are a batch
of proposed answers to a given question ready to be graded. Graders could optionally in
some cases be other students in the same course, in similar courses, or even outsourced to
students in other countries.
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The problem author would start out with a very simple template for each component, and make
each part more sophisticated. We imagine they might see the problem template on the left side
of the screen and a realtime rendering of the problem running on the right hand side, along with
buttons to reset or manually change the problem’s state to better test it.

• Tests: There are at least two types of automated tests we would initially implement:
Logical tests would be 3-tuples of states: an input state for the problem, a new state
caused by user feedback, and the resulting state update caused by the Respond component.
When authoring a problem, the sequence of states would be available graphically in the
preview pane, and the author could drag and drop states from the preview pane to the tests
pane. UI tests would involve rendering the UI for random (or prescribed) valid states of
the problem and ensuring that the rendering code doesn’t give any errors, and also satisfies
some conditions.

6.3.2 Make the interactive problem system available (2 weeks)

After implementing a first minimal usable version of 1, which would take about 2 weeks of fulltime
work by our team (only 2 weeks, since this is similar to the @interact functionality already in
Sage), we would make it available from SMC for people to test out. It would take about a week
to make this available to other people, since we would need to include feedback functionality.
This would not at all be production ready, e.g., the Respond component above would run as the
same Linux user as the person using the problem, hence cheating would be easy. Also, this stage
is focused entirely on specifying and interacting with a single interactive problem, rather than
creating homework assignments.

We would solicit feedback from our community (e.g., by notifying the 100K account holders on
SMC about this feature, by posting on social media where we have thousands of follows, etc.).
People would then create interactive problems using what we’ve written, and provide us with
feedback. We would also try converting some of our own problems and encourage people to try
other people’s problems. The result will be a lot of people playing little math games, while we
collect data about how things work. In particular, we record the state sequence as users interact
with problems, along with any errors that occur. We also have a text box next to every interactive
problem, in which the user is encouraged to type anything that comes to mind.

Based on about a week of feedback from users, we would then iterate on Step 1 again.

6.3.3 Implement a sharing marketplace (1 month)

Next we would implement a way for authors to share the interactive problems they create. We’ll
add an additional pane to the problem authoring tool from Step 1 through which the instructor
can publish a problem to a central database. The database would then get a snapshot of the
complete problem description, including testing code, etc. The instructor would specify the
copyright license under which other people are allowed to use their problem, which would include
both free (Creative Commons) and commercial with a set price.

Once a problem is pushed to the sharing database, we (the developers, initially - later other
people) would be notified and would peer review the problem. The author would then get a
notification about our peer review conclusion, and they could update their problem accordingly.
Sage developers are very used to doing a huge amount of this, and to having every contribution
extensively peer reviewed (see for yourself at http://trac.sagemath.org/).
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We anticipate it will take us about 1 month to get a basic usable version of this up and running.

6.3.4 Test the system on students via homework assignments (1 month)

Instructors will browse the marketplace and build a homework assignment from the interactive
problems they find there, and also problems they craft themselves. Again, there will be a graphical
browser, with drag and drop, which allows the instructor to put together the problem set, assign
points to each question, the order of problems, etc. Instructors will have extensive access to
information about how the problem has been used already by other students–how many people
have done the problem? do they like it? do they hate it? do they feel it helps them learn? do
they think it is broken? has it been peer reviewed? is it hard or easy?

Once a problem set is constructed, the instructor will assign it to the students in their course
using an updated version of the course management functionality built into SMC. Once assigned,
the instructor (and the teaching assistants) will have full access to the exact state of all problems
as they are worked on by students. They will see in a dashboard an overview of how students are
doing, who might be falling behind, etc. Students will be able to request help and the instructors
will then be able to see exactly what the student is doing, (video/text) chat with them, make
changes, highlight things, etc. The instructor can also use a slider to quickly see exactly what
the student has tried to do while working on the problem before offering advice (rather than only
asking the student “what did you try”).

We will spend about 1 month implementing a usable minimal version of the above. This takes
much longer than the previous 3 steps, since the quality requirements are much higher, as student
grades are potentially at stake (instructors are way more likely to provide quality feedback when
you’re actually saving them time!). We would also spend two weeks systematically gathering
usage data.

6.3.5 Iterate (3 months)

We would spend the remaining 3 months iterating the above process and collecting data. We
would in particular focus much of our effort on refining the tools for creating problems, since
there are many difficult UI components that problem authors will demand, and we will also see a
need for a library of sophisticated code tools for implementing the Respond part of the interactive
problems, possibly going as far as integrating some natural language processing functionality.

Based on our data and experience we will learn whether or not there is a market for the sort of
sophisticated automated homework problem system that we propose above. If so, we will then
apply for a second stage SBIR grant.
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